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optimal value of W, + W, must occur at one of the corners of the “staircase™
boundary separating the “feasible” and “infeasible™ regions in Figure 5.15.
There are no more than n* points on this staircase boundary. The stair-
case points can be identified by a search procedure which moves from one
corner point to another. Each move requires a single augmenting path compu-
tation which is O(n?) in complexity. Hence the entire staircase boundary can
be determined. and an optimal solution located, with an O(n*) computation.
(Hine: If W, + W, is infeasible, move “down” in the diagram of Figure 5.15 by
reducing W, until a feasible solution is found. Then move “right™ by increasing
the value of W, until infeasibility results.)
(@) Work out the details of this computational procedure, and write out the
steps of the algorithm.
(b) Attempt to generalize the procedure to three or more parallel produc-
tion lines. What computational complexity seems to be required?
7.5 For Problem 7.4, find, and prove, an appropriate generalization of the duality
theorem for max-min matching.
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Figure5.15 Feasible and infeasible
regions
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The Hungarian Method for Weighted Matching

The procedure we propose for the weighted matching problem is a primal-
dual method. called “Hungarian™ by H. W. Kuhn in recognition of the
mathematician Egervary.
For simplicity, assume a complete bipartite graph G = (S. T.S x T).
with |S| = m. [T| =n. m < n. A linear programming formulation of the
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with the understanding that
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The dual linear programming problem is:
minimizc); u + 'L:‘ v

subject to
u; + v; = Wi,
u, 20,
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Orthogonality conditions which are necessary and sufficient for
optimality of primal and dual solutions are:

x,-j>0=>u5+l}j=wij, (8.1]
u > 0= Z x;=1 (8.2)
i
i

The Hungarian method maintains primal and dual feasibility at all
times, and in addition maintains satisfaction of all orthogonality conditions.
except conditions (8.2). The number of such unsatisfied conditions is de-
creased monotonically during the course of the computation. 1

The procedure is begun with the feasible matching X = J and with
the feasible dual solution u; = W, where W = max {w;}, and v; = 0. for
all i, j. These initial primal and dual solutions clearly satisfy all of the condi-
tions (8.1) and (8.3), but not the conditions (8.2).

At the general step of the procedure. X is feasible. u; and v; are dual .
feasible. all conditions (8.1) and (8.3) are satisfied. but some of the conditions °
(8.2) are not. One then tries. by means of a labeling procedure. to find an
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augmenting path within the subgraph containing only arcs (i,j) for which
u; + v; = w;; In particular, an augmenting path is sought from an exposed
node i in S for which (necessarily) u, > 0. If such a path can be found, the
new matching will be feasible, all conditions (8.1) and (8.3) continue to be
satisfied, and one more of the conditions (8.2) will be satisfied than before.
If augmentation is not possible, then a change of § is made in the dual vari-
ables, by subtracting § > 0 from u, for each labeled S-node i and adding &
to v; to each labeled T-node j.

It is always possible to choose J so that at least one new arc can be
added to an alternating tree, while maintaining dual feasibility, unless the
choice of ¢ is restricted by the size of u; at some S-node. But u; takes on its
smallest value at the exposed S-nodes. The exposed nodes have been exposed
at each step since the beginning of the algorithm, and hence their dual vari-
ables have been decremented each time a change in dual variables has been
made. It follows that when u, is reduced to zero at these nodes. the conditions
(8.2) are satisfied, and both the primal and dual solutions are optimal.

The augmentation computation is such that only arcs (i, j) for which
u; + v; = wy are placed in the alternating trees. If the construction of the
alternating trees concludes without an augmenting path being found. then
one of two things has occurred. Either the trees are truly Hungarian and the
matching is of the maximum cardinality, or else it is not possible to continue
adding to the trees because all arcs (i, j) available for that purpose are such
that u; + v; > w;;.

Let us deal with the latter case first. Any arcs which we should like
to add to the alternating trees are arcs not in the matching X. (Because con-
dions (8.1) are satisfied, arcs in X are such that u; + v; = w;;.) Such arcs
are incident to an S-node in an alternating tree and a T-node not in any
tree. In the max-min problem. we lowered the threshold in the comparable
situation, thereby permitting at least one arc to be added to an alternating
tree. In the present case. we manipulate the values of the dual variables so
as to achieve the desired effect.

Suppose we subtract § > 0 from y; for each S-node i in a tree and add
d to v; for each T-node j in a tree. Such a change in the dual variables affects
the net value of u; + v; only for arcs which have one end in a tree and the
other end out. If such an arc is incident to a T-node of the tree, u; + v; is
increased by &, which is of no consequence (note that such an arc cannot be in
the current matching). If the arc is incident to an S-node of a tree, u, + v;is
decreased by &, possibly to w;; in which case it can be added to the u'ee

The effect of the changes in the dual variables is summarized in
Figure 5.16. Under each node in that figure is indicated the change in u; or
¢; On each arc is indicated the net change in u; + v; for that arc. All possibili-
tles are accounted for. (Note that it is not poss:ble tor an arc in the matching
to have one end in an alternating tree and the other end out.)

If the alternating trees are truly Hungarian. then the choice of § is
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Figure 5.16 Effect of change

Out of tree in dual variables

indeed determined by the value of ; at the exposed S-nodes. In this case, the
values of the dual variables are changed, as indicated above, conditions
(8.2) are satisfied, and both the primal and dual solutions are optimal.

The algorithm begins with the empty matching, X,, and then pro-
duces matchings X, X,,..., X}, containing 1,2,...,k arcs. Each of these
matchings is of maximum weight, with respect to all other matchings of
the same cardinality, as is shown below. (Incidentally, note that the maxi-
mum weight matching existing at the end of the computation does not
necessarily have maximum cardinality.)

Suppose we were to demand a maximum weight matching, subject
1o the constraint that it contains no more than k arcs. Then we could add a
single constraint to the primal lincar programming problem:

Z x; <k
ii

This constraint is identified with a dual variable 4 and, aflter appropriate
modifications in the dual problem, the orthogonality conditions become

X > 0= + v + A=wy

>0= Y x;=1,
i
r;>0= ) x;=1

i>0= Y x; =k

i
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Let X, be the matching of cardinality k obtained by the algorithm, and a,,
v; be the dual solution. Choose 4 = min {#;,}. Then X,,it, — 4,5,/ are
feasible primal and dual solutions for the k-cardinality problem and satisfy
the new orthogonality conditions indicated above. It follows that X, is
of maximum weight, with respect to all matchings containing k arcs.
As in the case of the threshold algorithm for max-min matching,
a number n; is associated with each node j in T This number indicates the
value of & by which the dual variables must be changed, in order that
Jj may be added to an alternating tree. The labeling procedure progressively
decreases m; until n; is equal to the smallest value of u; + v, — w;,, for
arcs (i, j) with ie S labeled. A node j in T may receive a label if n; > 0,
but its label is scanned only if r; = 0. In other words, j is “in tree” if and only
ifm; =0.
: The algorithm is summarized below. We leave it as an exercise for
the reader to verify that the number of computational steps required is
O(m?n), the same as for cardinality matching and max-min matching.

BIPARTITE WEIGHTED MATCHING ALGORITHM - W\‘ﬁ'

Step 0 (Start) The bipartite graph G = (S, T, 4) and\a'weight w;; for each
arc (i,j)e A are given. Set X = . Set u; = (’r:ax {wi}/for each node i€ .

Set v; =0 and n; = + oo for each node je T ydes are labeled.
Step | (Labeling)

(1.0) Give the label “@@" to each exposed node in §S.
(1.1) If there are no unscanned labels, or if there are unscanned labels, but
each unscanned label is on a node i in T for which n; > 0, then go to
Step 3. -
(1.2) Find a node i with an unscanned label, where either ie S or else
ieTand m; = 0. Il ie S, go to Step 1.3; il ie T, go to Step 1.4.
(1.3) Scan the label on node i (i€ S) as follows. For each arc (i, j) ¢ X
incident to node i, il u; + v; — w;; < n;, then give node j the label “i”
(replacing any existing label) and set n; = u; + v; — w;;. Return to
Step 1.1. Fags
(1.4) Scan the label on node i (i € T) as follows. If node i is exposed, go
to Step 2. Otherwise, identify the unique arc (i, j) € X incident to node
i and give node j the label “i.” Return to Step 1.1. \
Step 2 (Augmentation) An augmenting path has been found, lcrminal'i,.ng
at node i (identified in Step 1.4). The nodes preceding node i in the path are
identified by “backtracing” from label to label. Augment X by adding to X
|

-
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all arcs in the augmenting path that are not in X and removing from X
those which are. Set n; = + oo, for each node j in T. Remove all labels from
nodes. Return to Step 1.0.

Step 3 (Change in Dual Vuriables) Find

3, = min {uji€ S},
3, = min |x;|n; > 0,j € T},
§ = min {3,,d,}.

Subtract é from u;, for each lubeled node i € S. Add d to v; for each node je T
with n; = 0. Subtract & from n; for each labeled node je T with n; > 0.
If 6 < &, go to Step 1.1. Otherwise, X is a maximum weight matching and
the u; and v; variables are an optimal dual solution. Halt. //

There is an alternative, “primal™ approach to weighted matching.
This is to perform successive augmentations of the matching X by means of
a maximum weight augmenting path (where the weight of arc (i, j) is taken
to be wy; if (i,j)e X and —w;; if (i, j) ¢ X). This approach is essentially the
same as that used in the previous chapter to compute min-cost flows by suc-
cessive min-cost augmentations. We refer to this as a “primal” method be-
cause it involves no dual variables or other considerations of duality.

It is easy to devise a procedure for determining maximum weight
augmentations. In fact, a method essentially like that of Bellman and Ford
can be implemented very nicely within the framework ofa labeling procedure.
The computation of a maximum weight augmenting path requires O(m?n)
steps, when carried out in this way. Since O(m) augmentations are called
for. the overall complexity is O(m*n), compared with O(m?*n) for the Hun-
garian method.

The efficiency of the primal method can be improved, by making use
of node numbers, as described in the previous chapter. The number #} indi-
cates the weight of a maximum weight alternating path from an exposed
S-node to node i, relative to matching X,. These node numbers are used to
modify the arc weights, so that all arc weights are negative when a maximum
weight augmentation is sought, relative to matching X, . (Negative arc
weights are desired, since a maximum weight path is sought.) It follows that
a Dijkstra-like procedure can be used to find an optimal augmenting path.

When the details have been worked out, it is discovered that the
Dijkstra-like procedure looks very much like the Hungarian method. Speci-
fically. the computation of &, in Step 3 of the Hungarian method corresponds
to the operation of finding. in the Dijkstra computation, that “tentative”
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label which is next to be made permanent. Thus, the Hungarian method
and the modified primal method are essentially similar.

We noted a similar situation in the previous section, with respect

to the threshold method and the max-min augmenting path method for
max-min matching. The reader is referred to that discussion.

8.2

8.3

8.4

85

8.6

PROBLEMS

Apply the Hungarian algorithm to the weighted bipartite graph shown in
Figure 5.14 to find a maximum weight maltching and an optimal dual solution.
Interpret cach step of the Hungarian algorithm, as nearly as possible, as a
step of the out-of-kilter method. Where do the two algorithms differ?
Generalize the algorithm to the case

Z 'tl‘j < g,
i

Y xi; S by
i

(D. Gale) There are m potential house buyers and n potential housc sellers,
where m < n. Buyer i evaluates house j and decides that its value to him is
wy; dollars. If seller j puts a price of v; on his house, buyer i will be willing to
buy only if w;;, = v, Moreover, if there is more than one house j for which
w;; 2 v, he will prefer to buy a house for which w;; — v, is maximal. A set of
prices is said to be “feasible™ if it is such that for every buyer i there is at least
one house j for which w;; > v, Show that, with respect to all other feasible
sets of prices, there is one set of prices which maximizes both the sum of the
total profits to the buyers,

Z(“'u - ;)

and total proceeds to the sellers, ) v;.

Devise a simple example of a matching problem in which a maximum weight
matching does not have maximum cardinality. (All arc weights are to be strictly
positive.) How should the Hungarian method be modified so as to produce a
maximum cardinality matching which is of maximum weight (relative to all
other such matchings)?

Write out, in detail, the steps of a weighted matching algorithm based on the
approach of finding maximum-weight augmenting paths by a Dijkstra-like
procedure. Make a detailed comparison with the Hungarian algorithm.

9

A Special Case: Gilmore-Gomory Matching

Consider two examples of weighted matching problems which have parti-
cularly simple solutions.




