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ABSTRACT

A methodology is presented for the real-time automated identification, tracking, and short-term forecasting
of thunderstorms based on volume-scan weather radar data. The emphasis is on the concepts upon which the
methodology is based. A “storm” is defined as a contiguous region exceeding thresholds for reflectivity and size.
Storms defined in this way are identified at discrete time intervals. An optimization scheme is employed to
match the storms at one time with those at the following time, with some geometric logic to deal with mergers
and splits. The short-term forecast of both position and size is based on a weighted linear fit to the storm track
history data. The performance of the detection and forecast were evaluated for the summer 1991 season, and

the results arc presented.

1. Introduction

In convective situations, the forecasting problem
encompasses storm initiation, evolution, and move-
ment. For storm initiation, progress has been made in
the use of data from sensitive Doppler radars to detect
those boundary-layer features that arc important for
the forecast (Wilson and Schreiber 1986 ). Meanwhile,
forecasters have identified the need for an objective
procedure for detecting existing storms and extrapo-
lating their evolution and movement (Wilson and
Mueller 1993), This paper deals with the development
of such a procedure.

Many of the techniques developed for the short-term
forecasting of convective activity have incorporated
some form of tracking, such as the extrapolation of the
movement of features in the data. Pattern recognition
{Austin 1985) uses the similarity of patterns in the
data fields at successive times to deduce movement.
The cross-correlation technique ( Rinehart and Garvey
1978; Tuttle and Foote 1990) partitions the data fields
mto blocks or features, and identifies the movement
vector that maximizes the correlation between a feature
in the latest data field and the corresponding, but
translated, feature in the previous data field. Both the
pattern recognition and cross-correlation techniques
treat the data as a two-dimensional field from which
the movement of features may be inferred.

An alternative approach is to consider storms to be
distinct three-dimensional entities that may be iden-
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tified and for which physically based properties may
be computed. These entities are then tracked by
matching the storms at one time to their counterparts
at a later time. This is referred to as “centroid tracking”
(Austin and Bellon 1982). The advantage of this ap-
proach is that it makes more complete use of the in-
formation available; therefore, if done correctly, cen-
troid tracking should produce better forecasts than the
techniques based on two-dimensional data. In addition,
this method provides a tool for the scientific analysis
of storms as three-dimensional entities.

Crane (1979) presents a method in which two-di-
mensional cells are identified as regions around local
maxima in the reflectivity field for a given PPI (pian
position indicator). These cells are grouped into “vol-
ume cells” through the vertical association of cells in
successive PPIs. The volume cells are tracked by esti-
mating their velocity from past and present centroid
locations, using this velocity to forecast the new posi-
tion, and searching for cells close to the forecast posi-
tion. For a recently formed storm, the steering-level
wind is used as the forecast velocity. Witt and Johnson
(1993) and Rosenfeld (1987) detail similar methods.
In Witt’s method, cells are defined as regions with re-
flectivity exceeding a given threshold, and the forecast
velocity is based on a linear fit to the recent centroid
history of the storm. The starting storm velocity is an
operator-input value, which presumably would be set
to the best guess for storm movement. Rosenfeld’s
method uses a reflectivity threshold to delineate a
storm, and then identifies cells within the storm as re-
gions around local maxima. The tracking technique is
similar to Crane’s but is more complicated and includes
a check for overlap between the actual cell positions
and their corresponding forecast locations.
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The method presented here is similar, in some re-
spects, to those referred to above, in that storms are
defined as three-dimensional regions of reflectivity ex-
ceeding a threshold and are logically matched from
one scan time to the next. However, the identification
method is much simpler and is based on radar data
remapped into Cartesian coordinates, whereas the
methods just referred to use data in radar coordinates
with the associated geometrical complexity. The track-
ing component is based on an optimal solution to the
matching problem, and no assumption is made about
initial storm movement. Mergers and splits are iden-
tified through geometric logic about the storm positions
and shapes. Forecasts are based on a weighted linear
fit to the history of both the position and size of the
storm. Throughout, the emphasis is on simplicity be-
cause many similar methods have a tendency to be-
come overcomplicated.

The system is designed to keep pace with real-time
radar data and to provide analysis and forecast results
within 10 s or so of the end of a volume scan. The
storm and track data are maintained in a database that
permits analysis of the storm and track properties. The
capability to display these properties during real-time
data operations has been demonstrated. In addition,
the track data are available for postanalysis of storm
properties and the accuracy of the forecasts.

This methodology was originally developed, albeit
in a somewhat simpler form, for the objective evalu-
ation of a rain-augmentation experiment ( Dixon and
Mather 1986). Since mid-1990, the technique has been
refined and enhanced as part of an effort to improve
and automate convective nowcasting in the Denver
region of Colorado.

2. Storm identification

a. Storm definition

The experimental unit is defined here as a contiguous
region, all of which exhibits reflectivities above a given
threshold (73,), and the volume of which exceeds a
threshold (T,).

Clearly, the value of 7, determines the type of storm
that will be identified. Some possibilities are

e individual convective cells, 7, = 40-50 dBZ,

e convective storms, 7, = 30-40 dBZ,

e mesoscale convective complexes, 7, = 25-30dBZ,
e snow bands, T, = 15-25 dBZ.

For this study, the experimental unit is the convec-
tive storm. To investigate the sensitivity of the method
to the reflectivity threshold, 7, was set to 30, 35, and
40 dBZ. For all three cases the identification and
tracking technique worked well. Obviously, the 40-dBZ
storms were smaller and more intense (on average)
than the 30-dBZ storms, and the lower the threshold
the greater the number of apparent mergers.
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Based on the results of the initial experiments, 7,
was set to 35 dBZ for the final phase of the study. It
should be borne in mind that the subject of this paper
is the methodology, and that 35 dBZ was chosen as a
threshold suitable for developing and evaluating the
method. We are not suggesting that this is the correct
or only threshold for studying convective storms. (In-
cidentally, the system was tested on snow band storms,
at thresholds ranging from 15 to 25 dBZ, with prom-
ising results.)

The use of the volume threshold 7, is necessary to
prevent the tracking of noise or small regions of residual
ground clutter, and to keep the number of identified
storms within reasonable limits. For this study, T, was
set to 50 km?>.

b. Data preparation

The storm identification technique may be applied
to data in the radar coordinate system of range, azi-
muth, and elevation. In fact, the methodology was
originally developed on radar-space data (Dixon and
Mather 1986).

The geometry of a Cartesian coordinate system is
much simpler, however, and this both aids one’s con-
ceptual understanding of the procedure and simplifies
the computations of storm properties. Therefore, the
radar coordinate data are transformed into Cartesian
coordinates, and noise and ground clutter are filtered
out. The details of these operations are given in ap-
pendixes A and B.

¢. The identification method

To identify “storms” according to the definition
given in section 2a, we need to find contiguous regions
that have reflectivities above 7. For clarity, this will
be described in two dimensions (x, y). The concept is
readily extended to incorporate the third (z) dimension.

Consider Fig. 1. Assume that all of the shaded
squares represent Cartesian grid locations with reflec-
tivity in excess of 7. There are two steps to the pro-
cedure:

1) Identify contiguous sequences of points (referred
to as runs) in one of the principal directions (in this
case the x direction) for which the reflectivity exceeds
T,. There are 15 such runs in Fig. 1.

2) Group runs that are adjacent. A group of runs
should contain all of the points in one storm. In this
example, storm 1 comprises runs 1-6; storm 2 com-
prises runs 7, 8, and 10; storm 3 comprises runs 9, 11,
13, and 14; storm 4 contains only run 12; and storm
5, only run 15. Note that runs 5 and 7 are not consid-
ered adjacent since they only touch along a diagonal.
The same applies to runs 12 and 15. It is likely that
storms 4 and 5 would be rejected because they are



DECEMBER 1993

DIXON AND WIENER

y
1313 14} 14{14 15] Storn} 5
1111311 12| Storn| 4
9191919 Stbrm3 10{10] 10
] g 818
717 Storm{2
s [5i5 5 58
aafal ||
T31313 E3raliaby
24 -2t 2| Storm 1
T B
—_— X

FIG. 1. Examplc of storm data runs—2D case. Shading indicates
grid points where the reflectivity exceeds 7. Different shades indicate
different storms.

small. In the three-dimensional case, step 2 searches
for adjacent runs in both y (alongside) and z (above
or below).

The advantage of this two-step approach is that it re-
duces the dimensionality of the problem, making it
more efficient computationally. In the case of a three-
dimensional grid, once the runs have been found, the
identification procedure reduces to a two-dimensional
problem.

d. Storm analysis

For the purposes of the nowcasting experiment and
storm analysis, a large number of storm properties were
computed. These are listed in appendix C. However,
only the following storm properties arc relevant to this
methodology:

o reflectivity-weighted centroid (X, 7., 2,), using Z
to weight the centroid computations,

® volume V,

¢ the size and shape of the area of the storm pro-
jected onto a horizontal plane (i.e., the area as it would
appear from directly above the storm). The shape is
approximated by an ellipse, which best fits the projected
area as suggested by Zittel (1976) (Fig. 2). The ellipse
properties are the centroid (X, J,), the major and mi-
nor radii (Fmajor, 7minor)» and the orientation of the major
axis relative to the x axis (6).

The computation of the reflectivity-weighted cen-
troid and volume is straightforward. The computation
of the ellipse properties is based on a principal com-
ponent transformation of the (x, y) data in the pro-
jected area. This is a rotational transform that yields
axes along the principal components of the data (Rich-
ards 1986). In the two-dimensional case, these are the
major and minor axes, which is why the transform is
appropriate for the ellipse computations. The details
are given in appendix E,
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FIG. 2. Computation of projected-area ellipse parameters.

3. Tracking

a. Matching storm sets using combinatorial
optimization

Figure 3 depicts the centroids and projected areas
of two sets of storms, one set at time ¢, and the other
at time £, the difference Az being the time taken to
collect a single volume scan (~5-10 min). There are
not necessarily the same number of storms present at
each time—in this example, there are 4 storms at ¢,
and S storms at £,. The figure also shows the possible
paths the storms may have taken during the period
between ¢, and £,.

The problem is to match the ¢, storms with their ¢,
counterparts, or equivalently to decide which set of
logically possible paths most likely is the true one. If
this is done for successive time intervals, the storms
may be tracked for their entire duration.

Considering the figure, one may make the following
intuitive assumptions:

1) The correct set will include paths that are shorter
rather than longer. This is true for thunderstorms that
are observed frequently (Az ~ 5 min) because the ratio

—— Possible storm paths
Paths which are ‘too long’

O Storms at t;
Q Storms at t,

FIG. 3. Possible paths between storms at consecutive time intervals.
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of the size of the storm ( ~3-10-km diameter) to the
distance moved in At (~1-10 km) is such that it is
unlikely that a storm will move well away, to have its
former position (or one close to it) occupied by a dif-
ferent storm. Therefore, given a set of possible alter-
natives as shown in Fig. 3, the shorter the path the
more likely it is to be a true one.

2) The correct set will join storms of similar char-
acteristics (size, shape, etc.).

3) There is an upper bound to the distance a storm
will move in At, governed by the maximum expected
speed of storm movement (advection plus lateral de-
velopment). In the figure, the paths that exceed this
upper bound are drawn as faint lines.

The problem of determining the true set of storm
paths may be posed and solved as one of optimization.
We search for the optimal set of paths, where this set
minimizes the cost function as defined below, and we
assume that the optimal set and the true set are the
same.

Suppose that a storm { at ¢, has state S,; = (X;y;,
Vz21:5 V1i), and storm j at 1, has state Sy; = (X2, Vz2)»
V>;). Suppose too that there are », storms at ¢, and 7,
storms at 7,.

We may define the “cost” Cj; (in units of distance)
of changing state S,; to state S; as

C; = wd, + w,d,, where (1)

dy = [(X1; — X)) + (Fori — V22))°1'?
(assumption 1), (2)
and d,= |Vi*— V53| (assumption2). (3)

Here d, is a measure of the difference in position (i.e.,
the distance moved), d, is a measure of the difference
in volume (also in units of distance, because of the
cube root), and w, and w, are weights (both set to 1.0
for this study). '

Let the maximum expected storm speed be $p,ax (60
km h~! was used). This is a constraint on the system,
and may be incorporated by setting

C; equal to a large number if

d,/ At > Spay  (assumption 3).

4

This will ensure that the apparent cost of such a path
is so high that it will not be included in the optimal
set.

We wish to find the match that minimizes the ob-
jective function Q = 2 Cj;, where i refers to the start
point of a path and j the corresponding end point, and
the summation is performed over all possible sets of
storm paths. The number of paths in the match will
be less than or equal to the minimum of #;, and n,.

A problem posed in this manner can be transformed
into a weighted matching or optimal assignment prob-
lem and can be solved using techniques from the field
of combinatorial optimization. The transformed space
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has size n X n, where n is the maximum of »; and n,.
The method has order O(#3). (The order of a method
is a constant multiple of the maximum number of it-
erations required for solution.)

The optimal assignment problem can be stated in
the following manner:

Given an n X n matrix Cy;, find an n X n matrix X;
such that the following hold:

1) In any given row or column, X;; has exactly one
nonzero element and that element has the value 1.
2) The sum of C;X;; over all 7, j is a minimum.

We decided to use the Hungarian method for the so-
lution since this method is relatively easy to implement
and has order

O(p*q), where p = min(n,, ny),

g = max(n, np), (5)
since in our case C; may have different numbers of
rows and columns.

The Hungarian method algorithm first locates the
largest set of zero elements in C;, no two of which lie
in the same row or column. If there are n such zero
elements, then the positions of the X;; can be set to
match these zero elements in C;;, and the solution is
complete. If not, the algorithm transforms the matrix
C,; by adding values to appropriate rows and columns
to produce a new matrix D;;. It turns out that a solution
to the optimal assignment problem for D;; also solves
the optimal assignment problem for C;;. If the matrix
D,; does not have the n zero elements in differing rows
and columns, the algorithm will then continue to
transform Dj;. The algorithm guarantees that a solution
will be found after a finite number of transformations.

The Hungarian method is both complicated and
subtle. The short explanation given here is intended
merely to introduce the reader to the method. Roberts
(1984) gives a simple introduction to the method, and
Lawler (1976) provides more detail, including infor-
mation on the computer application of the method.

b. Handling mergers and splits

Quite frequently two or more convective storms will
merge to form a single storm, and somewhat less fre-
quently a single storm will split into two or more
storms. This is particularly true of “storms” as they
are defined in this paper. If the region between two
storms exceeds the reflectivity threshold for a short
time, the storms will appear to merge and then split
soon thereafter.

The result of applying the matching scheme just de-
scribed to mergers and splits is as follows:

e Merger—a maximum of one track will be ex-
tended, and the remainder will be terminated.
e Split—a maximum of one track will be extended,
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——  Actual track vector

<+ Forecast track vector

FiG. 4. Storm merger.

and new tracks will be created for the unmatched
storms.

It is necessary to enhance the tracking scheme to
handle these situations correctly. For example, consider
Fig. 4, which shows the merger of three storms. The
first step is to apply the matching algorithm as detailed
above. Perhaps one track will be extended, and it may
happen that none is extended. The latter occurs when
the apparent movement of the centroid from the un-
merged to merged situation is so great that the maxi-
mum speed constraint is violated. Then, we search
through the storms at ¢; for those storms that were
icrminated at £, by the matching algorithm. For each
of these tracks we are able to make a forecast of the
centroid position at £, using the technique detailed in
section 4. If this forecast position falls within the pro-
jected area of a storm at #,, we conclude that the ¢,
storm did not tcrminate but rather merged to form the
t, storm.

The splitting situation is treated similarly (Fig. 5).
In this case, for all the storms at ¢,, we forecast the
posttion, shape, and size of the projected-area ellipse
at 1. Then we consider all those storms at ¢, that are
apparently new tracks, that is, havc no history. If such
a storm has a centroid located within the forecast pro-
jected-area ellipse of a storm, we conclude that a split
has taken place.

4. Short-term forecasting

a. Methodology

In considering how to formulate the storm forecast
algorithm, we make the following assumptions:

® A storm tends to move along a straight line.

e Storm growth or decay follows a linear trend.

e Random departures from the above behavior oc-
cur.

DIXON AND WIENER
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Forecasts are made for a number of parameters
(listed in appendix D). The forecasts of importance to
the tracking technique are reflectivity-weighted cen-
troid, storm volume, and the parameters of the pro-
Jjected-area ellipse.

When a storm is observed for the first time, it has
no history from which to make a forecast. In this case,
ali rates of change are assumed to be zero, and a per-
sistence forecast is made. Forecasts at all later times
are based on a linear trend model with double expo-
nential smoothing (Abraham and Ledolter 1983).
Simply stated, this is a linear regression model, in which
the past values are weighted with exponentially de-
creasing weights.

Consider the time series p; for a given storm param-
eter p, where (/ = 0) is the present, ({ = 1) is one time
step in the past, and so on, and i ranges from 0 to 7,
— 1, where #, is the maximum number of time points
considered relevant to the forecast. Let ¢; be a measure
of the time, for example, the number of seconds since
the start of operations, and w; be a weight associated
with time step i.

For the exponentially smoothed model with param-
eter o, w; = o', where 0 < « < 1. A linear regression
is performed between w; p; and ¢;. Figure 6 presents a
simple example. The linear fit yields the equation of a
straight line. The slope of the line is the forecast rate
of change for the parameter p. It is assumed that the
current value is correct, and the forecast is based on
the current value and the forecast rate of change.

So if py is the current value, and dp/dt is the esti-
mated rate of change, then

d
D= Do + (_p)(S[

7 (6)

For the forecast of the projected-area ellipse, it is as-
sumed that the aspect ratio riyajor/ Fminor and Orientation
6 remain constant. The forecast of the area A4 is based

o Actual ellipse positions

——  Actual track vector
O Forecast ellipse position € Forecast track vector

FiG. 5. Storm split.
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— Time history data

-------- Weighted linear fit

FI1G. 6. Forecast based on weighted history.

on the rate of change of volume rather than area, since
the volume varies more smoothly with time than does
the area, and therefore provides a less erratic forecast.

So,
Ao (dV
= Ao+ 22 =)ot
A= Ao Vo(dt)

For this study, the parameters used were n, = 6 and «
= 0.5, and At was typically 6 min. For the type of
storms studied, the forecast accuracy proved to be in-
sensitive to a (Table 5).

(7)

b. Handling mergers and splits

The forecast depends on the recent storm history.
Therefore, when a merger or split occurs, the history
must be combined or split accordingly.

Let us first deal with the positional history. Consider
the merger depicted in Fig. 4. The positional history
of the merged track is a combination of the histories
of the three parent tracks. First, the parent track his-
tories are translated in (x, y) so that their forecast po-
sitions coincide with the centroid after the merger (Fig.
7). These translated histories are then combined as a
weighted average, where the weights are the ratio of
storm volume for each parent to the sum of the volumes
of all parents. Clearly the weights change at each time
in the history, depending on the size history of each of
the parents. In the case of a split, the history of each
child is a copy of the history of the parent, translated
to coincide with the centroid of that child (Fig. 8).

Next consider the storm size parameters, such as
area, volume, and mass. In the merger case, the history
of a parameter is computed as the sum of the histories
of the parents. In the split case, the history for a child
is computed as the history for the parent scaled by the
ratio of the volume of that child storm to the sum of
the volumes of all of the children.

¢. Evaluation

To evaluate the forecasts, both the forecast storm
position (ellipse) and the “truth” (the actual radar
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£} Histories before merger, with forecast.

Histories after translation in (x, y).

Merged weighted-average history.

FIG. 7. Positional history translation for storm merger.

echoes at the forecast time) are mapped onto a 5-km
X 5-km grid. A grid point is considered “active” if any
radar point in the area around that grid point exceeds
the storm reflectivity threshold 7.

The contingency table approach (Donaldson et al.
1975; Stanski et al. 1989) is used. The following defi-
nitions apply:

e Success—both truth and forecast grid points ac-
tive.

¢ Failure—truth grid point active and forecast grid
point inactive.

¢ False alarm—truth grid point inactive and forecast
grid point active.

The probability of detection (POD), false-alarm ra-
tio (FAR), and critical success index (CSI) are com-
puted as follows:

POD = Nsuccess , (8)
Asuccess + Rfailure
M L »
/
M

T

History before split, with forecast

History translated in (x, y)

F1G. 8. Positional history translation for storm split.
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FAR = Hfaise alarm , (9 )
Plsuccess + Afaise alarm
_ Msnceess
CSI = (10)

Hguccess + Pgaiture + Pfaise alarm

The forecast results are presented in section 5.

5. Discussion and results

The data presented in this section are iniended to
show that the method works and to give the reader a
feel for the type of results produced by the forecasting
system. The analyses include data from all radar ranges
(0-150 km), and no attempt was made to discriminate
between storms in the mountains and those on the
plains. A more detailed treatment of the results will be
the subject of a later paper.

The system was run using real-time data from the
Mile-High Radar near Denver for the summer of 1991,
from 29 May to 29 August. Operations were generally
limited io the hours from 1100 to 1900 MDT. The
radar is a prototype similar to the WSR-88D (Pratte
et al. 1991).

Figure 9 presents a typical plot of a storm track,
showing the recent storm history, the present position,
and the forecast.
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A total of almost 4100 tracks were identified. Of
these, 2000 were discarded for one or more of the fol-
lowing reasons:

o The storm existed at the beginning or end of radar
operations, and therefore either the beginning or end
of the track data were missing.

e The storm came too close to the radar for complete
observation of the tops, or moved out of radar range
(>150 km).

e The storm was observed during only one volume
scan, resulting in a trivial track. This was the most
common reason for rejection.

Of the 2100 or so “good” tracks remaining, 12%
contained mergers or splits. Figure 10 presents the re-
lationship between the duration and mean volume for
each track, and indicates a positive correlation between
duration and volume.

A few tracks in Fig. 10 have short durations and
large mean volumes—these result from those cases in
which the tracking algorithm fails to detect a merger
or split and therefore discontinues the track for a ma-
ture storm and starts a new track for the same mature
storm. If such a split follows a merger (or vice versa)
the result may be a short track with a large mean vol-
ume. These failures occur for storms of very irregular
shape because an ellipse does not fit the boundary well
and the search for mergers and splits is confined to the
interior of the ellipse. An improved algorithm that will

km 20 15 10 5

1991/08/24 21:45:36 3(km) Tracks fo 21:45:35 Tz 35 Forecast 0.5(hr) km

(Dbz)

past
R > foracast
past
current

forecast
Q 5 10

FI1G. 9. Example of track plot.
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FIG. 10. Scatterplot of mean storm volume versus track duration.

describe the storm shape as a polygon rather than an
ellipse is being tested, and indications are that this will
do better for the identification of mergers of irregularly
shaped storms.

Figures 11 and 12 show truncated histograms of the
duration and mean volume of the storm tracks. The
upper tails of the distributions, which have small values,
have been truncated. From the figures it is clear that
a large percentage of the storms are small, with a mean
volume of less than 400 km?3 and a duration of less
than 2 h. The zero entry for the first histogram interval
in Fig. 12 is caused by the volume threshold 7, which
was set to 50 km?.

%
35.00

30.00

25.00

20.00

15.00
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F1G. 12. Truncated histogram of mean storm volume per track.

The evaluation of the forecast accuracy was per-
formed in a number of different ways, with minor vari-
ations between each. The simplest and most stringent
approach is to consider the data on a volume-by-vol-
ume basis and compare the forecast positions of all of
the storms with their actual positions as detected later.
Table 1 presents the results of this analysis. Note the
POD value of 0.91 at the forecast time of 0 min (i.e.,
storm detection). This indicates that on average 91%
of the radar projected area falls inside the ellipse, and
9% outside, since the ellipse area is set equal to the
radar-measured projected area. It was found that the
daily mean for this POD was reasonably constant at
about 90%.

By way of comparison, Table 2 shows the 30-min
forecast evaluation results from a nowcasting experi-
ment performed in the Denver region of Colorado for
the 1989 and 1990 summer seasons (Wilson and
Mueller 1993). The evaluation is also based on a 5-
km X 5-km grid. The “human” forecasts incorporate
both the extrapolation of existing storms and the fore-
cast initiation of new storms. The data in Tables 1 and

TABLE 1. Forecast evaluation—volume-by-volume analysis.

5.00

0.00

2.00 3.00

Duration (h)

0.00 1.00

FIG. 11. Truncated histogram of storm-track duration.

Forecast lead time (min)

POD FAR CSI

0 0.91 0.13 0.80
6 0.76 0.28 0.59
12 0.64 0.40 0.45
18 0.55 0.48 0.36
24 0.48 0.56 0.30
30 0.42 0.62 0.25
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TABLE 2. Forecast evaluation—Denver nowcasting experiment;
forecast lead time 30 min.
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TABLE 4. Forecast evaluation—track-by-track analysis, with
minimum required history.

Forecast type and date POD FAR CSI
Human, 1989 0.62 0.68 0.27
Persistence, 1989 0.27 0,63 0.19
Human, 1990 Q.55 0.85 0.14
Fxtrapolation only, 1990 0.15 0.75 0.10
Persistence, 1990 0.11 0.84 0.07

2 show that the accuracy of the automated forecasts is
comparable with that of human forecasts. The follow-
ing differences between the analyses should be noted:

¢ This method excludes all storms with a volume
of Iess than 50 km?, while the nowcasting experiment
included all detectable storms.

¢ This method system used a 35-dBZ threshold for
storm definition. The nowcasting experiment threshold
was 30 dBZ for 1989 and 40 dBZ for 1990.

e This method only ¢xtrapolates existing storms,
whereas the human forecasters aticmpied to handle
initiation as well.

A problem with the preceding evaluation is that the
analysis on a volume-by-volume basis includes all
storms, cven if they are too young for a forecast to be
applicable 1o them. For example, if a storm is 15 min
old, 11 is not possible for a 30-min forecast to have
predicted its existence, since initiation is not dealt with.
This complicates the evaluation by including cases for
which the technique is not designed. If the aim is to
analyze the method with a view to improvement, a
more relevant approach is to perform the analysis on
a track-by-track basis and include only those cases in
which the storms are old enough to have been forecast,
that is, for which the history exceeds the forecast lead
time. Table 3 presents the results of the track-by-track
analysis.

As a further condition on the analysis, one may
evaluate only those cases in which the storms have suf-
ficient history for one to reasonably expect the forecast
10 be accurate. The criterion used here is that the storm
history must be at least half as long as the forecast lead
time. Table 4 presents the results for this analysis.

Table 5 presents an analysis on the sensitivity of the
forecast accuracy to the parameter «. Clearly, the ac-
curacy is not very sensitive to the value of «, and the

‘TaBLE 3. Forecast evaluation—track-by-track analysis.

Forecast lcad time (min) POD FAR CSI
6 0.83 0.30 0.61

12 0.76 0.43 0.48

18 0.70 0.53 0.39

24 0.64 0.62 0.32

30 0.59 0.68 0.26

Forecast Minimum
lead time history
(min) (min) POD FAR CSI
6 3 0.83 0.27 0.64
12 6 0.78 0.39 0.52
18 9 0.73 0.50 0.42
24 12 0.68 0.56 0.36
30 &) 0.63 0.62 0.3t

optimum lies between 0.25 and 0.75. An investigation
was also carried out to determine the optimum value
for n,, the number of history volumes used in the
forecast. An », value of 6 seems suitable for all
values of .

Tables 4 and 5 summarize the statistics for all of the
tracks together. It is also useful to consider the forecast
accuracy for individual tracks. We therefore analyzed
each track, comparing the forecast storm locations with
those observed for that track, and computed the POD,
FAR, and CSI values averaged over the lifetime of the
storm. Figures 13, 14, and 15 present scatterplots of
POD, FAR, and CSI versus storm-track duration for
a forecast lead time of 30 min and a minimum history
of 15 min. Because of these constraints, the minimum
duration for any track in the plots is 45 min. These
plots show the range of forecast results that occur for
storms of different durations. The scatter is large, in-
dicating that the behavior of storms varies significantly
and that the statistical forecasting model presented here
performs much better in some cases than others.

6. Future enhancements
The method would benefit from the improvements
discussed in this section.
a. Storm identification and tracking at multiple
threshold levels

Some of the features that could be tracked using
multiple threshold levels include

e individual celis within a convective storm,
e individual convective storms within a squall line,
e cellular features within a snow band.

TABLE 5. Sensitivity analysis for a—track-by-track analysis, with
minimum required history, n, = 6.

Forecast Minimum
lead time history
(min) (min) a POD FAR CSI
30 15 0.26 0.617 0.620 0.307
30 15 0.50 0.630 0.620 0.310
30 15 0.75 0.628 0.630 0.303
30 15 1.00 0.625 0.641 0.298
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FiG. 13. Scatterplot of mean track POD versus storm-track
duration; forecast lead time 30 min, minimum history 15 min.

The identification of features using a higher reflectivity
threshold, 7., is relatively simple once the identifi-
cation at 7, is complete. The higher-intensity echo will
be contained within the runs identified for the larger
less-intense feature, and the search may be confined to
those runs. Therefore the T, search does not add sig-
nificantly to the computations.

b. Incorporation of a more detailed shape
representation for the projected area

The possibility of using shapes other than ellipses to
depict the projected area is currently under investiga-
tion. The ellipse was chosen as the initial candidate
because of its simplicity. Other potential shape cate-
gories include

e arbitrary curvilinear shapes,
e convex polygons,
e arbitrary polygons.

¢. Using additional storm properties to sharpen the
forecast

The storms and their tracks have well-defined prop-
erties. It seems probable that some of these contain
information that could be used to amend the forecast.
For example, a multivarate correlation analysis be-
tween storm volume and other properties, the volume
being lagged in time, could yield a lagged linear model
for volume forecasts.

7. Hardware requirements

This system is data driven in that it needs to keep
pace with a real-time radar data stream. It was found
that all of the processing required, including display,
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FIG. 14. Scatterplot of mean track FAR versus storm-track
duration; forecast lead time 30 min, minimum history 15 min.

can be adequately performed on two workstations in
the 10-15-MIPS (million instructions per second)
class, and from initial tests it appears that a single
workstation in the 20-MIPS class would be able to per-
form all of the functions.

8. Conclusions

This methodology provides the framework necessary
to identify storms within three-dimensional radar data
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F1G. 15. Scatterplot of mean track CSI vs storm-track duration;
forecast lead time 30 min, minimum history 15 min.
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and to track them as physical entities. The storm and
track data are suitable for scientific analysis, for the
purposes of both understanding and forecasting the
physics of storm development and movement.

The method was successfully applied during real-
time operations for a summer season in Colorado, and
the human observers felt that typically it performed
well. The accuracy of the forecasts is encouraging and
is comparable with that of human-based forecasts that
take additional factors such as low-level convergence
and storm initiation into account. The intention is to
use the system to assist forecasters in future field proj-
ects, who will in turn provide fecdback on how well
the system performs, and what enhancements should
be made.

APPENDIX A
Cartesian Transformation and Noise Filtering

The Cartesian transformation is performed using the
“nearest neighbor” principle with no interpolation. It
is assumed that the radar will be operated using a fixed
scan strategy. For each point in the target Cartesian
grid, the coordinates of the closest radar point are
computed and stored in a table. This table is then in-
verted, so that the target Cartesian locations for each
radar point are known. When a radar beam is pro-
cessed, the gate data are placed directly into the ap-
propriate place in the Cartesian grid. Typically, there
are radar points to which multiple Cartesian points
correspond (long ranges, radar undersampling) and
radar points with no corresponding Cartesian point
(short ranges, radar oversampling).

During the transformation, noise suppression is car-
ried out. A signal-to-noise threshold T, (dBm), is set.
Any radar point with a signal-to-noise value below T},
is considered to contain missing data. This removes
much of the noise, but leaves some “spotty” areas
where the noise spikes exceed T5,. Such spikes could
be caused by receiver noise, or point targets such as
birds, aircraft, and ground targets. Removal of these
spots is accomplished in a second step. Let L, be the
minimum dimension for any feature considered valid.
The data from each beam are searched for runs of data
above T, but with a length less than L,;,. Such runs
are flagged as missing data. For this study, 7%, was set
to 10.0 dB, and L, to 1.2 km.

APPENDIX B
Clutter Removal

Ground clutter presents a problem if the size of a
region of clutter exceeds Vmin. In the case of the Mile-
High Radar near Denver, which provided the data for
this study, the Rocky Mountains cause significant clut-
ter regions.

The clutter map is computed from a number of
Cartesian volumes (at least 20) sampled during a period
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of no significant weather. The signal-to-noise ratio
Tn_ciutier applied to these volumes is set somewhat lower
than T,. The reason for this is to include clutter points
that are borderline, and that may exceed 7, only some
of the time. The clutter value for a Cartesian grid point
is computed as the median of the reflectivity values at
that grid point for all of the clear-air scans.

This clutter map is then used to filter out clutter
during the Cartesian transformation stage. A grid point
is considered to contain clutter if the reflectivity does
not exceed the clutter map value plus some clutter
margin.

The relevant values used for this study were T, cutter
= 4.0 dB with a clutter margin of 6.0 dB.

This clutter removal methodology is based on Hynek
(1990), and this reference should be consulted for fur-
ther details.

APPENDIX C
Computed Storm Parameters

The following storm parameters were computed:

e centroid for whole storm and for each plane,

o reflectivity-weighted centroid for whole storm and
for each plane,

g top!

e base,

e volume,

e area for each plane, and mean area,

e mass of precipitation for whole storm and for each
plane (based on Z-M relationship),

e rain flux (based on Z-R relationship),

e angle and direction of tilt,

e max and mean reflectivity for whole storm and
for each plane,

e height of max reflectivity,

e estimate of vorticity about a vertical axis through
the storm centroid (based on circular storm model)
for whole storm and for each plane,

® mean and standard deviation of velocity for whole
storm and for each plane,

e mean and standard deviation of spectral width for
whole storm and for each plane,

e position, size, and shape of rain region (lowest
plane),

e position, size, and shape of projected area,

e histogram of reflectivity as function of volume,

e histogram of reflectivity as function of area.

APPENDIX D
Forecast Parameters

The following forecast parameters were computed:

e centroid,

¢ reflectivity-weighted centroid,
® top,

e base,

e volume,
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® mean area,

e mass of precipitation (based on Z-M relation-
ship),

e rain flux (based on Z-R relationship),

e rain area,

e projected area.

APPENDIX E
Computation of Rotated Ellipse Parameters

The parameters of the rotated ellipse fitted to the
projected area are derived from the parameters of a
principal component transformation applied to the (x,
y) data pairs that make up the projected area.

Refer again to Fig. 2. Suppose there are n (x, y)
pairs, each of which represent a grid point in the pro-
jected area of the storm. Then

_ 1 _
X==2Xx, V=
n

M=

Vi (El)

I |-

1

]

i

An estimate of the covariance matrix of the (x, y) data
is given by .

COVyy = [j ;] , where (E2)
d=—1 % (o -9, (E3)
n—1.
1 n
e=——Zx-D-F), (B4
1 n
f=—— 3 - (ES)
n—1,7

The principal component transformation is based
on an eigenvalue-eigenvector analysis of the covariance
matrix. For computer implementations, the best ap-
proach is to use a general purpose numerical eigen-
vector solver because these take care of all of the special
cases that may arise, and that are data dependent.
However, for completeness, we will include the equa-
tions that describe the two-dimensional analysis as it
is applied to the ellipse problem.

The eigenvalues of the covariance matrix are given
by

@+ N+ —adf—eN]'?

XIQAZ_ 2 H

(E6)

where ), is the larger of the two eigenvalues. Here A,
represents the variance of the data in the u direction,
and )\, the variance in the v direction. Therefore,

12 Ominor — A%/Z’ (E7)

T major = AS,
where Gmajor and Gminor are the standard deviation of
the data in the u and v directions, respectively.
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The normalized (u, v) eigenvector in (u, v) coor-
dinates associated with A\, is given by

1 1/2
v = [(1—4—}2_)] , M= =gV, where (E8)

_f+e_’>\]
Tdte— (E9)

The ellipse properties are computed as follows. The
centroid position is given by the mean of the (x, »)
data

(X, Do) = (X, ). (E10)

The rotation 8 of the ellipse major axis relative to the
X axis is given by

0 = tan-‘(ﬁ) . (E11)
I
The area of the storm, 4, is given by
A = ndxdy, (E12)

where dx and dy are the Cartesian grid spacing in x
and y, respectively.

We set the ellipse area to be equal to the storm area.
The major and minor radii of the ellipse are therefore

given by
A 1/2
Fminor = dminor(—"—“—) s
T 0 majorT minor
A 1/2
Vmajor = amajor( ) (E 13 )
T 0 majorT minor
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