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Mission and Network

Investigate and model the climate system and its interaction with society
to provide reliable, rigorous, and timely scientific results to stimulate
sustainable growth, protect the environment and to develop science-
driven adaptation and mitigation policies in a changing climate.
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The CMCC Divisions
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Activities:

* Production of climate predictions at seasonal to decadal time-scale
and climate change projections (global scale, regional focuses).

* Communication of the results and information obtained to a broad
range of users: decision makers and stakeholders, political bodies
and public administration, researchers from other disciplines.

* Coordinate research on adaptation policies to climate change and
provide technical and scientific support to the institutions for
multilateral negotiation processes in the field of climate change
(EU, IPCC, UNFCCQC).
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The CMCC SeasonalPrediction System
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associated, in particular the
radiative forcing

SPSv1

The CMCC Seasonal Prediction System is initialized with the “closest to reality” state of
the ocean (SPSv1) and land-atmosphere (SPSv2), which drive the model towards a state
affected by the initialization itself other than boundary conditions and its internal physics.
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Approachingseasonalforecasts

Uncertainties on initial data could be large. Deterministic Forecast
To supply for this issue: ensemble

technique with perturbed initial conditions.

Uncertainty on

. the forecats
Uncertainty on

Initial Conditions

Reanalyses Climatology ——,

0 o\ 0
_ Probabilistie. _
time S~ - .
Eorecast -

Readapted from Trzaska (http://portal.iri.columbia.edu)
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The experimental setup

Retrospective forecasts (hindcasts) for validation
OFF LINE interpolated
Land-Atmosphere IC from

Daylagevery 12 hours
Operational analysis
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OFF LINE assimilated
OCEAN ANALYSIS

e 6-month-integration for the period 1989-2010
¢12 start dates per year(once a month)

¢ 9 ensemble members for each start date

perationalforecasts
te everymonth 1st
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Validation of the CMCC-SPS

Tsurf Anomaly Correlation (ACC) lead time 1

February start-date May start-date

Lead time 1 refers to the
season starting one
month after the start date
(e.g. Feb lead 1 = MAM)
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ACC is a measure of the skill of the system, indicating the correlation between forecast
and ERAinterim reanalyses between 1989-2010. Values close to 1 => high predictability.

*Predictability is higher in the Tropics and in the oceans than on continents.

e High skill in the ENSO area and teleconnected regions.
e Good skill in the Northern Atlantic region, particularly in the winter and the spring




SST Anomalies SST Anomalies

SST Anomalies

Validation of the CMCC-SPSv?2

Predictability of ENSO

Nino3.4 Index 11 Start-date 1st month (1989-2010)
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(here, Nov lead 1 (2) = DJF
(JFM))

The ENSO signal is well predicted by the CMCC-SPS, with anomaly correlation
coefficients higher than 95% in the NINO3.4 region




WAMI anomaly (m/s)

Validation of the CMCC-SPS

WAMI anomaly (m/s) May start date, lead 1 (JJA)
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Results from
threedifferentversions of the

CMCC-SPS
Experiment SPS1 SPS1.5 SPS2
Initialization
Ocean CIGODAS CIGODAS CIGODAS
Atmosphere No ERA Interim ERA Interim
Land surface No No ERA Interim

Materia et al., 2013




The importance of an accurate ocean

Assimilated Ocean IC
a) Stort date May 1 b) Start date November T

ACC for the start date of May and

November (SPSv1)which assimilates

observed profiles of temperature

and salinity through the water

column of the global configuration
Ocean IC with no assimilation of the OPA8.2 ocean model.

c) Start date Mey 1 d) Start dote November 1

Comparison with an AMIP-like
initialization, performed by
prescribing observed SST (HadISST1.1;
Rayner

et al. 2003)boundary forcing to the
atmospheric model.

-08 -06 -04 -02 0 02 04 06 08 1

Assimilated IC vs. no Assimilation
e) Stort dote Moy 1 f)  Start date November

From Alessandri et al., 2010




El Nino 1997/1998: onset

No assimilation Ocean analysis Assimilation (SPSv1)
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Evolution of the heat content anomaly (shaded) and zonal wind stress anomaly
(contour) averaged between 5S and 5N. Forecast anomalies are ensemble means.

From Alessandri et al., 2010



The introduction of land-atmosphere initial state
SPSv2 - SPSv1l

November
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Surface temperature ACC (reference ERA interim), difference between SPSv2 and SPSv1
SPS2 provides a remarkable improvement of the forecast skill at lead-season 0, where the effect of
initialization is clearly reflected. Continental areas benefit the most from the more realistic initial state,
but enhancements are mainly lost after lead-season 0. In the ocean instead
*northern Pacific, long-lasting skill improvements due to strong air-sea coupling in the region during the
fall. SSTAs force a PNA pattern response, atmospheric reaction could in turn change SSTs
*ENSO region in May, and ETA in November, when the effect of atmosphere is stronger. In the season of

major upwelling, SSTs are mostly determined by upwelling of deep water, which does not change in the
two experiments
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s ________________________________________________________
Separating the contribution of
atmosphere and land surface initial state

The SPSv1.5 experiment maintains the atmosphere initial conditions, but
excludes the prior knowledge of land-surface state.
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SPSv2-SPSv1.5, May/Nov start dates: Surface temperature ACC

Differences in ACC are larger on continents than over ocean, and improvements carried by SPSv2 are
season and region dependent. Sometimes better land surface IC degrade the quality of the forecast,
most likely due to the initialization technique (Materia et al. 2013)
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The seasonal forecast bulletin
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CMCC-SPSv2.0 Seasonal Forecast
August 2012

SUMMARY

In the upeoming six months a permanent warm conditions from the current state is
predicted for Equatorial Pacific. The extra-tropical North Pacific will be warmer than
the average in the western sector, colder alongside the American coast. Below normal
temperature will characterize Western Canada and Australia. While a transition from
the current warm state to colder conditions is predicted for North-Western Europe.
Warm conditions for Northern Asia is predicted. Central and West Africa, East
Indian Ocean, Australia, Indonesia and Philippines are expected to underge a dry
season, while wet eonditions are predicted for Western Central Pacific.

This bulletin is based on model simulations performed with the Seasonal
Prediction System developed at CMCC (CMCC-5P5v2). A 6-month
forecast is produced every month starling from a synthesis of the current
state of the ocean and the atmosphere. Both deterministic and probabilistic
predictions are provided for global precipitation and surface temperature
fields. A regional focus on the equatorial Pacific (NINO3 region) is also
supplied.

Important! Seasonal Forecasts do not provide any detailed spatial information, but
only give a general sense of the character of the season by providing a forecast off
seasonal temperature and rainfall anomalies probability of oceurrence.

e Quasi-monthly product

» Still a scientific exercise (not
operational yet)

* It provides updates about
actual situation, verification
versus the latest season,
and the forecast for the
next one

* Available upon request, on-
line soon




Seasonal forecast for late autumn-early winter (NDJ)
GLOBAL VIEW
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Seasonal forecast for late autumn-early winter (NDJ)
NORTH EURASIAN REGION
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