Winter Forecast for 2013-2014 GPC Tokyo

Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA)

Outline

1. Numerical prediction

2. Interannual variation

1. Numerical prediction

2. Interannual variation

Current SST conditions (October 2013)

Predicted SST conditions (DJF 2013/2014)

ENSO-neutral conditions are likely to persist.

NEACOF-5, October 29 - November 1, 2013

Predicted 200-hPa circulations (DJF 2013/2014)

Predicted 500-hPa height in N.H. (DJF 2013/2014)

Predicted SLP and T850 in N.H. (DJF 2013/2014)

Probability Forecasts (DJF 2013/2014)

Surface temperature

JMA Seasonal Forecast (Forecast initial date is 13 10 2013) Most likely category of Surface Temperature for DJF 2013

Probability Forecasts (DJF 2013/2014)

Precipitation

JMA Seasonal Forecast (Forecast initial date is 13 10 2013) Most likely category of Precipitation for DJF 2013

Numerical prediction Interannual variation

Arctic sea ice extent

The sea-ice extent shows a decline since 1979.The current extent is less than normal.

Source: National Snow and Ice Data Center, the USA

SSTs in northern North Atlantic (DJF)

• The SSTs show a increasing trend and above-normal conditions in the last decade.

from 1979-1980 to 2012-2013

SLP over northern Eurasia

 The SLP shows a tendency of above-normal conditions in recent years.

Possible impacts of Arctic sea-ice anomalies

Differences of SLP and SAT (DJF) between light-ice years and heavyice years

Gray shading indicates areas with less than a 99% confidence level.

Inoue et al. (2012)

Summary

<Numerical prediction>

- ENSO-neutral conditions is likely to persist during winter 2013-2014.
- The predicted patterns are generally similar to those observed in past La Nina winters.
- Surface temperatures in North Eurasia are likely to be below normal due to negative phase of AO and positive SLP over its northern part (not high confidence).

<Interannual variation>

• SLP in northern North Eurasia shows a increasing tendency, which may be associated with light sea-ice extent and warm SSTs in the northern North Atlantic and the Arctic Sea.

Thank you

Contact: tcc@met.kishou.go.jp

Supplements

JMA Seasonal Prediction System

Model	CGCM (MRI/JMA-CGCM) (Coupled atmosphere-ocean General Circulation Model)
Resolution	 Atmospheric component Resolution: <u>T₁95 L40</u> Oceanic component Resolution: Horizontal 1.0^o longitude, 0.3^o-1.0^o Vertical: 50 levels
Ensemble method	 Method: Combination of Breeding of Growing Modes (BGM) and Lagged Average Forecast (LAF) Size: 51 (9 BGMs & 6 days with 5-day LAF)
Frequency of forecast issuance	Once a month
Hindcast	1979-2010 (32 years) Verification data: JRA-25/JCDAS, GPCP ver. 2.2

Verification of SST (DJF)

NEACOF-5, October 29 - November 1, 2013

95% significant

Verification of 200-hPa velocity potential (DJF)

Prediction accuracy (based on 30-year hindcasts)

NEACOF-5, October 29 - November 1, 2013

Verification of major winter circulation patterns

Anomaly Correlation Coefficient (ACC) between hindcast (1-month lead) and observation

ANAL

ACC: 0.37

ANAL

NEACOF-5, October 29 - November 1, 2013

Verification of 850-hPa temperature (DJF)

Anomaly correlation coefficients (ACC) between 30-year hindcasts and JRA/JCDAS

Verification of probabilistic forecasts for surface temperature (DJF)

Verification of probabilistic forecasts for precipitation (DJF)

Regression onto the Barents Sea's Ice (DJF)

Regression (detrending)

Upper: Sea ice concentration averaged in the Barents Sea (45-90E, 70-80N The time period for the statistics is 1979/80 – 2010/11. NEACOF-5, October 29 - November 1, 2013

SST and sea ice impact experiment (last winter)

0.75

Top left: AGCM responses in the 500-hPa height field to daily SST and sea ice anomalies (deviations between ensemble-mean responses forced with real SSTs and those done with normal SSTs).

Top right: 500-hPa height and anomalies for winter 2012/2013

Bottom: SST anomalies for winter 2012/2013

NEACOF-5, October 29 - November 1, 2013